Muchas más proteínas que genes (y un ejemplo tumoral)

ResearchBlogging.orgEn nuestro ADN tenemos algo más de 20.000 genes. Es nuestro genoma. Que se reparte en 24 cromosomas diferentes cuya longitud oscila entre 50 y 250 millones de pares de bases (50.000-250.000 Kpb). En realidad, 23 parejas; y en cada una de ellas, uno de papá y otro de mamá.

Dentro de los cromosomas hay genes (y muchas otras cosas, porque los genes son solo un 2% de esos millones de paras de bases). Los genes no son otra cosa que instrucciones para montar proteínas. Lo hacen gracias al código genético, que asigna un aminoácido a cada triplete en la secuencia de bases del gen. Y también gracias a las moléculas que intervienen para que el código genético sea una realidad (ARN polimerasa, espliceosoma, ARNm, ribosoma, ARNt, aminoacil-ARNt-sintetasa).

Pero… Pero tenemos algo más de 20.000 genes, como ya te dije. Sin embargo fabricamos más de 100.000 proteínas diferentes.

¿Cómo hacemos para lograrlo?  😮

Pues no es difícil, la verdad. Con el splicing. O sea, con el corte y empalme alternativo del ARN. Caaaaalma. Ya verás que es más fácil la idea que esos nombres, que el vocabulario que dice quién hace qué.

Resulta que el ADN hace copias de los genes. Pero en ARN. El ADN no sale del núcleo. Jamás. Y esas copias, antes de llegar a ser leídas, sufren un proceso por el cual pierden unos trozos, llamados intrones. Y quedan otros, llamados exones. Los intrones están intercalados entre los exones. De ahí lo de corte y empalme. Pero si unas veces quitas unos intrones y otras veces quitas otros puedes sacar dos versiones diferentes del mismo ARN. De ese modo logramos variantes de una proteína. Isoformas las llaman.

%CODE1%

Tú podrías pensar que para qué queremos esto. Y sería una pregunta muy lógica. Con varias respuestas. Y una de ellas es relativamente sencilla. Porque las condiciones fisicoquímicas en, digamos el corazón, no son las mismas que en, digamos los riñones. Por tanto no viene mal tener preparadas unas variantes (isoformas) de una proteína que funcionen bien el corazón y otras que hagan lo propio en los riñones.

Pero, además, las isoformas pueden tener características diferentes. Te cuento el caso de una que me ha llamado la atención: la piruvato quinasa. Es un enzima importante, que cataliza el último paso de la glucólisis. La glucólisis es una ruta metabólica muy antigua (existe desde antes de que el planeta tuviera oxígeno en su atmósfera) que produce energía (poca) a partir de la glucosa y sin necesidad de oxígeno. Cuando hay oxígeno se logra mucho más rendimiento pero cuando no (anaerobiosis se llama eso), la glucólisis es la única manera de producir energía (p.ej., al realizar un ejercicio intenso en un tiempo breve). Pero esa es solo una de las facetas de este enzima. Resulta que tiene dos isoformas: PKM1 y PKM2. La habitual es PKM1; PKM2 se expresa, sobre todo, en época fetal y poco a poco va siendo sustituida por la PKM1. La diferencia es que PKM2 quita un exón (el 9) que sí aparece en PKM1 e incluye otro (el 10) que no está en PKM1 (que codifica para una región a la que se le puede añadir un marcador, un grupo acetilo, que hace que altere su forma y, lógicamente, modifica su función.). Y eso cambia muchas cosas. Tantas que PKM2 es un enzima que se expresa en células cancerígenas de muy diversos tipos; mientras que PKM1 no lo hace o lo hace poco. De hecho, los análisis de sangre que revelan concentraciones anormalmente elevadas de PKM2 son elementos diagnósticos para varios tipos de cánceres. Porque la piruvato quinasa puede actuar también, además de en la glucólisis, catalizando reacciones de fosforilación de proteínas en el núcleo. Proteínas que pondrán en marcha determinados genes relacionados con la reproducción celular. Pero solo bajo la forma de PKM2. En cambio, concentraciones elevadas de PKM1 inhiben, no se sabe cómo, el desarrollo del tumor.

Son las dos caras de una molécula. Dos caras en dos isoformas pero también en dos funciones. Una en el citoplasma (glucólisis) y otra en el núcleo (fosforilación de proteínas).

Todo por quitar el exón 9 y poner el exón 10…

McCarthy, Nicola (2013). Nuclear or cytoplasmic? Nature Reviews Cancer DOI: 10.1038/nrc3630
Jill D. Dombrauckas, Bernard D. Santarsiero, & Andrew D. Mesecar (2005). Structural Basis for Tumor Pyruvate Kinase M2 Allosteric Regulation and Catalysis Biochemistry DOI: 10.1021/bi0474923

5 respuestas a «Muchas más proteínas que genes (y un ejemplo tumoral)»

  1. Joel

    Me gustó mucho tu artículo… hace años que explico el splicing alternativo y no suele ser habitual que se explique en 4ESO que es donde yo lo hago. Me gustó el ejemplo de la PKM y el vídeo. Chulísmo!
    Sin embargo, hay algo que no me cuadra o lo desconozco. Decir que tenemos 24 cromosomas diferentes me vale si consideramos los cromosomas sexuales distintos, que lo son en un gran segmento. Pero que son 24 parejas… ummm, no lleva a un poco de confusión? Son 46 cromosomas en las células humanas, así que me parece mejor hablar de 23 parejas (22 de autosomas y una de cromosomas sexuales).

    Responder
  2. ConcienciudoBlog

    Muy didáctica la explicación para esta realidad proteómica. Yo me dedico a la ingeniería de proteínas, estudiante predoctoral y tu blog es una referencia de consulta para mi en muchas ocasiones. Me he decidido a hacer un blog de ciencia también, aunque enfocado menos a la enseñanza y más al lector curioso y a la divulgación.

    He puesto tu blog en mi Directorio para que mis seguidores sean también los tuyos.

    Un saludo!!

    Responder

Deja un comentario si lo deseas. ¡Y gracias por leer! :)

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.